Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem

نویسندگان

چکیده

NiTi shape memory alloys (SMAs) are used in a broad range of biomedical applications because their unique properties including biocompatibility and high corrosion wear resistance as well functional such superelasticity the effect. The combination SMAs additive manufacturing can lead to revolutionary changes uses industry. This article discusses potential that benefit from AM process. We share lessons learned processing with focus on laser powder bed fusion (LPBF) technique. manufacturability, build quality, stable phases transformation temperatures, microstructure, thermomechanical properties, microstructure tailoring, produced via reviewed. Current challenges expanding process window, controlling chemistry, performance property responses discussed, opportunities alloy design discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanofretting behaviors of NiTi shape memory alloy

Nanofretting behaviors of NiTi shape memory alloy Linmao Qian a, Zhongrong Zhou a,∗, Qingping Sun b, Wenyi Yan c a Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031, China b Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China c School of Engineering and Information Technology, De...

متن کامل

Computational studies of shape memory alloy behavior in biomedical applications.

BACKGROUND Nowadays, shape memory alloys (SMAs) and in particular Ni-Ti alloys are commonly used in bioengineering applications as they join important qualities as resistance to corrosion, biocompatibility, fatigue resistance, MR compatibility, kink resistance with two unique thermo-mechanical behaviors: the shape memory effect and the pseudoelastic effect. They allow Ni-Ti devices to undergo l...

متن کامل

On the Damping Behaviour of Niti Shape Memory Alloy

Shape memory alloys exhibit a high damping capacity in the mktensite state. Results obtained from both DMA and cyclic tests under tension-compression load show that the martensite damping capacity in NiTi SMAs is a function of both strain amplitude and annealing temperature. Internal friction due to movements of martensite twin boundaries within both elastic (accommodation) and inelastic (reori...

متن کامل

Ultrasonically assisted turning of NiTi based shape memory alloy

In this study, vibration cutting has been applied to machining of a novel material, NiTi based shape memory alloy (SMA), using a commercial ultrasonic piezoelectric transducer to vibrate an ISO insert CCMT geometry cutting tool. The effect of vibration in turning process was characterized by investigating the surface roughness of workpiece and surface quality assessment of machined surface usin...

متن کامل

Crystallization kinetics of amorphous NiTi shape memory alloy thin films

The temperature dependence of the crystallite nucleation and growth rates is measured for amorphous NiTi thin films. Using transmission electron microscopy, crystallites are shown to nucleate homogeneously in the film and to grow in a channeling mode. A mechanism that suppresses heterogeneous nucleation is proposed. By manipulating nucleation and growth rates, grains as large as 60 lm can be ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JOM

سال: 2021

ISSN: ['1543-1851', '1047-4838']

DOI: https://doi.org/10.1007/s11837-021-04937-y